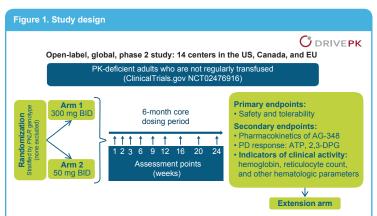
Effects of AG-348, a pyruvate kinase activator, in patients with pyruvate kinase deficiency: Updated results from the DRIVE PK study Rachael F Grace¹, D Mark Layton², Frédéric Galactéros³, Christian Rose⁴, Wilma Barcellini⁵, D Holmes Morton⁶, Eduard van Beers⁷, Hassan Yaish⁸, Yaddanapudi Ravindranath⁹, Kevin HM Kuo¹⁰, Sujit Sheth¹¹, Janet L Kwiatkowski¹², Bruce Silver¹³,

Charles Kung¹⁴, Varsha Iyer¹⁴, Hua Yang¹⁴, Penelope A Kosinski¹⁴, Lei Hua¹⁴, Ann Barbier¹⁴, Bertil Glader¹⁵

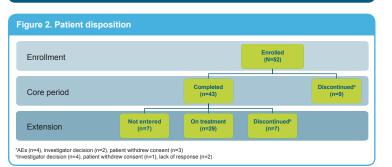
¹Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; ²Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK; ³University of Utah, Salt Lake City, UT, USA; ²Hammersmith Hospital of Michigan, Italy; ⁴Central Pennsylvania Clinic, Belleville, PA, USA; ⁷Universitair Medisch Centrum Utrecht, Netherlands; ⁸University of Disorders Center, Netherlands; ¹University of Disorders Center, Netherlands; ¹University of Philadelphia and Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA; ¹³Bruce A Silver Clinical Science and Development, Dunkirk, MD, USA; ¹⁴Agios Pharmaceuticals, Inc., Cambridge, MA, USA; ¹⁵Stanford University School of Medicine, Palo Alto, CA, USA


BACKGROUND

- Pyruvate kinase (PK) deficiency is an under-recognized hereditary disease caused by mutations in the PKLR gene, which results in lifelong hemolytic anemia.¹
- · Acute and chronic complications of supportive care (e.g. transfusions, splenectomy, or iron chelation) may additionally burden patients with PK deficiency.

OBJECTIVE

 To report updated data from the ongoing DRIVE PK study (ClinicalTrials.gov NCT02476916), an open-label dose-ranging trial of AG-348 in adults with PK deficiency who are not receiving regular blood transfusions.


METHODS

Not regularly transfused = no more than 3 units of red blood cells transfused in the 12 months prior to the first day of study dosing and no ransfusions within 4 months of the first day of study dosing All patients provided written informed consent 2.3-DPG = 2.3-diphosphoglycerate; BID = twice daily; PD = pharmacodynamic

- · Enrollment is complete as of November 2016.
- Data cutoff: July 14, 2017.
- · Cumulative safety results are summarized for the Core + Extension periods by randomized treatment group (50 mg BID, 300 mg BID, and overall)
- · Clinical activity and sex hormone levels were analyzed by the dose received for the longest duration in the Core period.
- Dose changes were allowed per protocol for various reasons:
- Dose decrease: adverse events (AEs) and/or hemoglobin (Hb) exceeding the midpoint of the normal range (male: >15.0 g/dL; female: >13.5 g/dL).
- Dose increase: lack of Hb response.

RESULTS

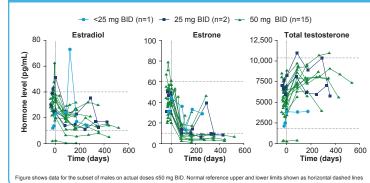
Table 1. Demographic characteristics

Characteristic	50 mg BID n=27	300 mg BID n=25	Total N=52
Male, n (%)	18 (66.7)	14 (56.0)	32 (61.5)
Age at randomization, median (range), years	28 (18–58)	40 (21–61)	34 (18–61)
White [*] , n (%)	22 (81.5)	21 (84.0)	43 (82.7)
Hb baseline, median (range), g/dL	9.6 (6.9–12.3)	8.6 (6.5–12.0)	8.9 (6.5–12.3)
Splenectomy, n (%)	23 (85.2)	20 (80.0)	43 (82.7)
Cholecystectomy, n (%)	19 (70.4)	19 (76.0)	38 (73.1)
Mutation category, n (%) Missense/missense Missense/non-missense Non-missense/non-missense	15 (55.6) 6 (22.2) 6 (22.2)	17 (68.0) 4 (16.0) 4 (16.0)	32 (61.5) 10 (19.2) 10 (19.2)
Iron chelation prior to enrollment, n (%)	14 (51.9)	11 (44.0)	25 (48.1)
Duration of AG-348 treatment, median (range), weeks	34.6 (13.0–92.4)	38.7 (12.9–86.4)	37.5 (12.9–92.4)
"Other races: not reported (n=3) Asian (n=3) other (n=3)			

Cumulative safety summary

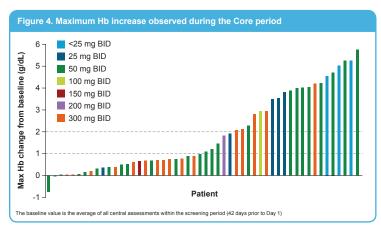
- AG-348 was generally well tolerated.
- The majority of AEs were grade 1–2.
- Treatment-related AEs leading to discontinuation (n=4):
- Hemolytic anemia, hypertriglyceridemia, pharyngitis/nausea, pleural effusion. · There were 14 serious AEs in 11 patients.
- Five treatment-related serious AEs in four patients: anemia, hypertriglyceridemia, osteoporosis, withdrawal hemolysis followed by anemia.

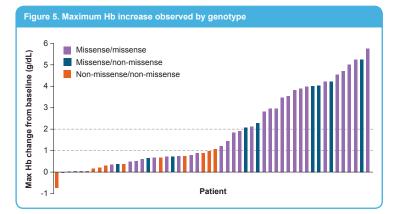
Table 2. Most common AEs regardless of causality or grade (occurring in >15% of patients)


AE	50 mg BID n=27		300 mg BID n=25		Total N=52	
	All grades	Grade ≥3	All grades	Grade ≥3	All grades	Grade ≥3
Patients experiencing ≥1 AE, n (%)	26 (96.3)	8 (29.6)	25 (100.0)	7 (28.0)	51 (98.1)	15 (28.8)
Headache	10 (37.0)	0	14 (56.0)	0	24 (46.2)	0
Insomnia	6 (22.2)	1 (3.7)	16 (64.0)	1 (4.0) ^a	22 (42.3)	2 (3.8)
Nausea	10 (37.0)	0	10 (40.0)	0	20 (38.5)	0
Viral upper respiratory tract infection	8 (29.6)	0	4 (16.0)	1 (4.0)	12 (23.1)	1 (1.9)
Arthralgia	5 (18.5)	0	4 (16.0)	0	9 (17.3)	0
Hot flush	2 (7.4)	0	7 (28.0)	0	9 (17.3)	0
Cough	4 (14.8)	0	4 (16.0)	0	8 (15.4)	0
Diarrhea	4 (14.8)	1 (3.7)	4 (16.0)	0	8 (15.4)	1 (1.9)
Dizziness	5 (18.5)	0	3 (12.0)	1 (4.0) ^a	8 (15.4)	1 (1.9)
Fatigue	4 (14.8)	0	4 (16.0)	0	8 (15.4)	0
Influenza	7 (25.9)	1 (3.7)	1 (4.0)	0	8 (15.4)	1 (1.9)
Vomiting	3 (11.1)	0	5 (20.0)	0	8 (15.4)	0

a" (n=2) hemolysis" (n=1) nos ated to study drug as ass sed by the investigato

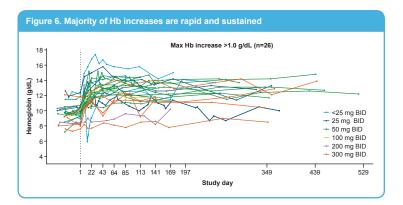
Effect of AG-348 on sex hormones


- · Modest changes from baseline in sex hormone levels were observed in males at planned pivotal trial dose levels (≤50 mg BID).
- Data are consistent with mild aromatase inhibition.
- Most sex hormone values remained within normal limits in females (data not shown). Interpretation is confounded by variability in menopausal status and contraceptive use.



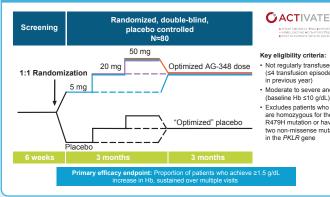
Clinical activity

- 26 of 52 (50.0%) patients had a maximum Hb increase of >1.0 g/dL.
- The mean maximum increase was 3.4 g/dL (range 1.1-5.8 g/dL).



- · Median time to the first observation of an Hb increase >1.0 g/dL above baseline was 10 days (range 7-187 days).
- Median baseline Hb in patients who experienced a maximum Hb increase of >1.0 g/dL was 9.7 g/dL (range 7.3–12.3 g/dL) versus 8.0 g/dL (range 6.5–10.1 g/dL) in patients who did not.
- In nine patients, the dose had to be held or reduced due to a rapid rise in Hb.


CONCLUSIONS


- AG-348 is a novel, first-in-class, PK-R activator in clinical testing as a potential disease-altering therapy for patients with PK deficiency.
- · Chronic daily dosing with AG-348 is well tolerated.
- Consistent safety profile over the duration of treatment (median 37.5 weeks).
- Ongoing follow-up will continue to assess the clinical impact of mild aromatase inhibition.
- Patients who respond to AG-348 have rapid and durable responses.
- 26 of 52 (50%) patients had a maximum Hb increase of >1.0 σ/dl
- The mean maximum increase in Hb was 3.4 g/dL in patients with an Hb increase >1.0 g/dL.
- Genotype-Hb response correlations informed eligibility criteria for pivotal trials.
- Pivotal trials in adults with PK deficiency are starting in the first half of 2018:

CACTIVATE N≈80 PHASE 3 CLINICAL TRIAL INVESTIG NOVEL ENZYME ACTIVATOR'S TRE

NOVEL ENZYME ACTIVATOR'S TREATM FECT IN PK DEFICIENCY PATIENTS WI

- Key eligibility criteria
- Not regularly transfused (≤4 transfusion episodes
- Moderate to severe anemia (baseline Hb ≤10 g/dL)
- are homozygous for the R479H mutation or have two non-missense mutation

Acknowledgments

who agreed to participate in this study, and Drs Ellis Neufeld and David Nathan for helpful discussion: Disclosures

-vB: Agios – consultancy. Bayer, Octapharma, older. VI: Agios – employment, s BS: Agios - consultancy. C AB: Agios - employment s H: Agios – employment, stock ded by Helen Varley, PhD, Excel Scientific Solutions, Horsham, UK, and supported by Agios Editorial assistance was p

References

to/ 2015:90:825-30. 2. Percy MJ et al. Blood Cells Mol Dis 2007:39:189-194

