

Preclinical pharmacokinetics and pharmacodynamics of AG-519, an allosteric pyruvate kinase activator

Yue Chen, Raj Nagaraja, Kha Le, Penelope A Kosinski, Gavin Histen, Charles Kung, Hyeryun Kim, Chandra Prakash, Lenny Dang, Janeta Popovici-Muller, Jeffrey Hixon, Lee Silverman, Scott Biller, <u>Hua Yang</u>

Agios Pharmaceuticals Inc., Cambridge, MA, USA

Presented at the 21st Congress of the European Hematology Association, 12 June 2016, Copenhagen, Denmark

Disclosures

- This work was supported by Agios Pharmaceuticals, Inc.
- All authors are Agios employees and stockholders
- Editorial assistance was provided by Helen Varley, PhD, CMPP, of Excel Scientific Solutions, Horsham, UK, and supported by Agios

Background: Pyruvate kinase (PK) deficiency

Description	 A rare genetic disease causing chronic hemolytic anemia Symptoms vary in severity Current treatments are supportive only 	Glucose	Glycolysis in healthy red blood cell
Etiology	 Caused by mutations in the red blood cell isoform of PK (PK-R), a key enzyme in red blood cell glycolysis 	PK-R L ATP	
Biology	 Leads to increases in the upstream metabolite 2,3-DPG and decreases in the product ATP in blood 	Glucose	
Therapeutic concepts	 Activation of mt PK-R could repair the metabolic defect Increase hemoglobin levels and decrease hemolysis, leading to patient benefit 	2,3-DPG mt PK-R ATP	Defective glycolysis in mt PK-R red blood cell

Yang et al. 20th EHA Congress, 2015, Abstract S138.

2,3-DPG = 2,3-diphosphoglycerate; ATP = adenosine triphosphate; mt PK-R = mutant PK-R

PK-R activators for the treatment of **PK** deficiency

- Activation of PK-R resulting in increases in ATP and decreases in 2,3-DPG in healthy volunteers has been observed with an earlier molecule (AG-348)
- Early AG-348 clinical data demonstrate proof-ofconcept with rapid and sustained Hb increases in patients with PK deficiency¹
- AG-519 is a potent, highly selective, orally bioavailable second PK-R activator developed with the aim of eliminating off-target aromatase inhibitory effects of AG-348

Objectives

To explore the

pharmacokinetic/pharmacodynamic (PK/PD) relationships of AG-519 with PK-R activity, ATP and 2,3-DPG in wild type PK-R mice

 To use data from animal studies to project the pharmacokinetic profile and efficacious dose of AG-519 in humans

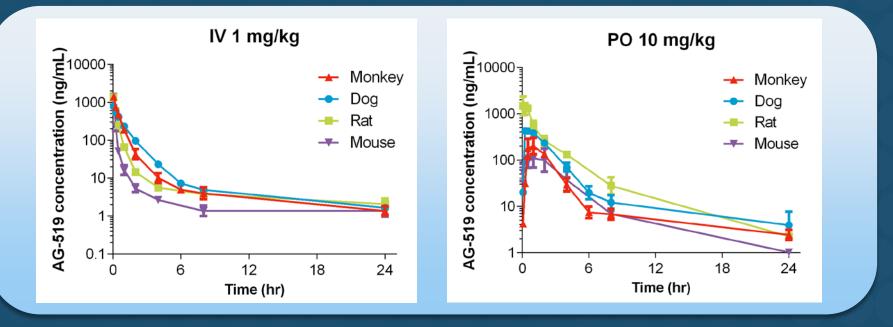
Human efficacious dose and dosing regimen projection

- Human pharmacokinetics projection
 - Pharmacokinetic studies in different species
 - In vitro metabolism
 - Plasma protein binding and in vitro CL_{int}

- Human efficacious exposure estimation
 - Cell biology and biochemistry studies
 - PK/PD studies

Modeling simulation for human projection

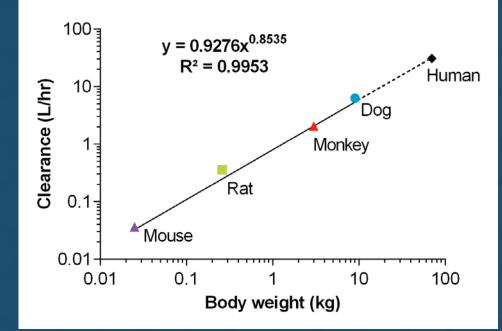
Human efficacious dose and dosing regimen projection


- Human pharmacokinetics projection
 - Pharmacokinetic studies in different species
 - In vitro metabolism
 - Plasma protein binding and in vitro CL_{int}

- Human efficacious exposure estimation
 - Cell biology and biochemistry studies
 - PK/PD studies

Modeling simulation for human projection

Comparable AG-519 pharmacokinetics across species



- Moderate clearance (1.13–2.51 L/hr/kg), moderate to high volume of distribution (2.08–6.44 L/kg) and similar plasma protein binding (79.3% 87.3%) in mouse, rat, dog and monkey
- Rapid absorption (T_{max} ≤1.2 h) and moderate oral bioavailability (6.9– 19.5%)
- Good in vitro to in vivo correlation in the CL estimates across species

Human pharmacokinetic projections

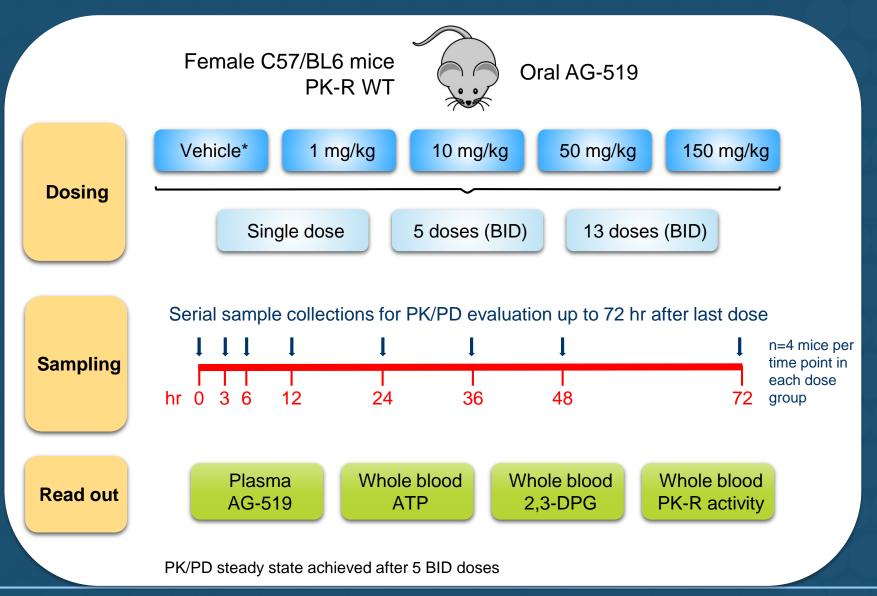
- Pharmacokinetic parameters in mouse, rat, dog and monkey used for human pharmacokinetic projection
- In vitro metabolism data used as a correction factor
- Allometric scaling conducted for human pharmacokinetic projection

Corrected for Eh

Projected human pharmacokinetic parameters:

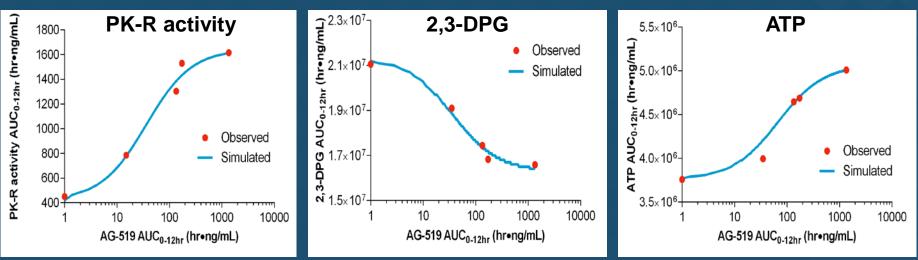
- CL: 0.4 L/hr/kg
- V_{SS}: 3.0 L/kg
- Effective $t_{\frac{1}{2}}$: 4 7 hr
- Bioavailability: 22%

Human efficacious dose and dosing regimen projection


- Human pharmacokinetics projection
 - Pharmacokinetic studies in different species
 - In vitro metabolism
 - Plasma protein binding and in vitro CL_{int}

- Human efficacious exposure estimation
 - Cell biology and biochemistry studies

PK/PD studies


Modeling simulation for human projection

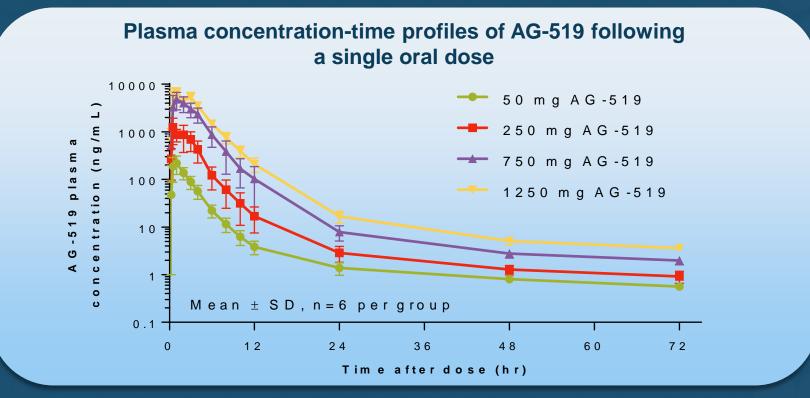
Mouse PK/PD study design

Using mouse PK/PD to estimate human efficacious exposure

- Drug exposure-dependent response observed for all three markers
- The exposure-response relationship is described by an E_{max} model
- EAUC₉₀ (421 hr•ng/mL) for ATP increase used for human efficacious dose prediction

Parameter (13 BID doses)	PK-R activity	2,3-DPG	ATP
AG-519 free AC ₅₀ (nM)	0.55	0.32	0.72
AG-519 EAUC ₉₀ (hr•ng/mL)	320	187	421

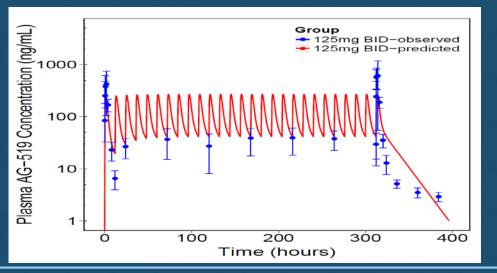
 AC_{50} = half-maximal activity concentration; $EAUC_{90}$ = area under the curve at 90% maximum effect


AG-519 human dose projection

- Favorable pharmacokinetics in multiple species
- Clear PK/PD relationship established in the mouse model enabled the prediction of the AG-519 efficacious dose in humans
- Projected human efficacious dose and dosing schedule:

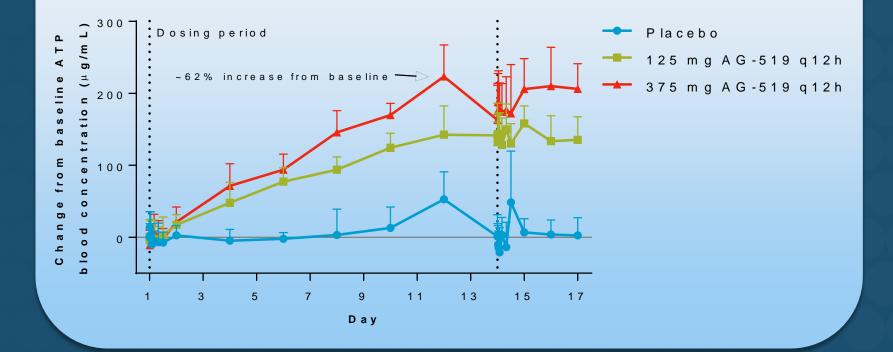
- 62–134 mg, orally twice daily

These data supported the decision to bring AG-519 into a phase 1 healthy volunteer study


AG-519 has favorable clinical pharmacokinetics: Poster 752

- Rapid absorption, moderate variability
- Exposure is dose-proportional or slightly greater than dose-proportional
- Effective t_{1/2} of approximately 6 hr

Comparison: projected vs actual human pharmacokinetics


- Human pharmacokinetic profile was simulated using animal data, the projected human pharmacokinetic parameters, and a 2-compartment model
- Animal AG-519 pharmacokinetic data translate well to healthy volunteers
- The actual human pharmacokinetic profile is similar to the simulated
 - Slightly higher than projected Cmax; good Ctrough projection
 - As projected, pharmacokinetic profile supported oral BID dosing regimen

	Projected	Actual
CL/F, L/hr/kg	1.8	0.66–1.0
Effective t _{1/2} , hr	4–7	6

Dose-dependent changes in ATP and 2,3-DPG blood levels are consistent with PK-R activation: Poster 752

Mean (+ SD) change in blood concentration-time profiles of ATP following multiple oral doses of AG-519 (cohorts 1 and 2 only)

Conclusions

- AG-519 shows favorable pharmacokinetic profiles in multiple species
- Preclinical PK/PD relationship and favorable pharmacokinetics enabled prediction of human efficacious dose and dosing regimen
 - AG-519 has favorable pharmacokinetic profile in humans
 - Dose-dependent PD response consistent with PK-R activation
 - AG-519 has a favorable safety profile to date, and it does not demonstrate the inhibition of aromatase previously observed with AG-348
- The PK/PD data from healthy subjects will inform dose selection for future studies of AG-519 in patients with PK deficiency

Acknowledgements

- Agios PK-R discovery team
- Agios PK-R development team
- The volunteers taking part in the AG-519 phase 1 study