Phase 1 study of AG-120, an IDH1 mutant enzyme inhibitor: results from the cholangiocarcinoma dose escalation and expansion cohorts

Maeve A Lowery¹, Ghassan K Abou-Alfa¹, Howard A Burris III², Filip Janku³, Rachna T Shroff³, James M Cleary⁴, Nilofer S Azad⁵, Lipika Goyal⁶, Elizabeth A Maher⁷, Lia Gore⁸, Antoine Hollebecque⁹, Muralidhar Beeram¹⁰, Jonathan C Trent II¹¹, Liewen Jiang¹², Yuko Ishii¹², Julia Auer¹², Camelia Gliser¹², Samuel V Agresta¹², Shuchi S Pandya^{12,*}, Andrew X Zhu⁶

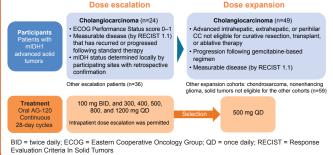
¹Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA; ²Sarah Cannon Research Institute, Tennessee Oncology, Nashville, TN, USA; ³University of Texas MD Anderson Cancer Center, Houston, TX, USA; ⁴Dana-Farber Cancer Institute, Boston, MA, USA; 5Sidney Kimmel Comprehensive Cancer Center, at Johns Hopkins, Baltimore, MD, USA; Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA; 7University of Texas Southwestern Medical Center, Dallas, TX, USA; 8University of Colorado Cancer Center, Harvard Medical School, Boston, MA, USA; 7University of Texas Southwestern Medical Center, Dallas, TX, USA; 8University of Colorado Cancer Center, Harvard Medical School, Boston, MA, USA; 7University of Texas Southwestern Medical Center, Dallas, TX, USA; 8University of Colorado Cancer Center, Harvard Medical School, Boston, MA, USA; 7University of Texas Southwestern Medical Center, Dallas, TX, USA; 8University of Colorado Cancer Center, Harvard Medical School, Boston, MA, USA; 7University of Texas Southwestern Medical Center, Dallas, TX, USA; 8University of Colorado Cancer Center, Harvard Medical School, Boston, MA, USA; 7University of Texas Southwestern Medical Center, Dallas, TX, USA; 8University of Colorado Cancer Center, Harvard Medical School, Boston, MA, USA; 7University of Texas Southwestern Medical Center, Dallas, TX, USA; 8University of Colorado Cancer Center, Harvard Medical School, Boston, MA, USA; 7University of Texas Southwestern Medical Center, Dallas, TX, USA; 8University of Colorado Cancer Center, Dalla Aurora, CO, USA; 9Institut Gustave Roussy Cancer Centre, Villejuif, France; 10START San Antonio, TX, USA; 11Sylvester Comprehensive Cancer Center, Miami, FL, USA; 12Agios Pharmaceuticals, Inc., Cambridge, MA, USA *E-mail address: Susan.Pandya@agios.com

BACKGROUND

- Mutations in the metabolic enzymes isocitrate dehydrogenase (IDH) 1 and 2 produce the oncometabolite D-2-hydroxyglutarate (2-HG).^{1,2}
- 2-HG accumulation results in epigenetic and genetic dysregulation and a block in cellular differentiation, leading to oncogenesis.³⁻⁵
- IDH1 mutations are detected in up to ~25% of intrahepatic cholangiocarcinoma (CC) cases.
- · On the basis of the available literature, IDH1 mutations appear to have no prognostic significance in CC.6
- · Progression-free survival (PFS) in patients with advanced biliary cancer receiving second-line chemotherapy is 2-3 months.^{7,8}
- There are no approved targeted therapies for CC, and chemotherapy is the main treatment option for unresectable or metastatic disease.
- AG-120 (ivosidenib) is a first-in-class, potent, oral inhibitor of the mutant IDH1 (mIDH1) enzyme that is being tested in a phase 1 study enrolling patients with mIDH1 solid tumors, including CC.
- Preliminary data from the dose escalation cohorts have been presented previously.9

OBJECTIVES

- A phase 1 study of AG-120 in mIDH1 advanced solid tumors.
- Primary endpoints:
- Determine safety, tolerability, maximum tolerated dose, and/or recommended phase 2 dose.
- Secondary endpoints:
- Characterize pharmacokinetics and pharmacodynamics.
- Evaluate clinical activity, including overall response rate, PFS, and overall survival in patients with CC (12-month overall survival follow-up period).
- Exploratory endpoints:
- Characterize the pharmacodynamic effects of AG-120 in patients
- Here we report data from patients with CC enrolled in the dose escalation and expansion cohorts.


METHODS

Study design

• The study design is shown in Figure 1.

Figure 1. Study design for the CC subset of patients

Phase 1, multicenter, open-label study: ClinicalTrials.gov NCT02073994

- · Dose escalation phase:
- Eight dose levels tested between 100 mg BID and 1200 mg QD.
- The 500 mg QD dose was selected for the four expansion cohorts based on safety, tolerability, and pharmacokinetic/ pharmacodynamic data from the dose escalation phase.

Assessments

- Response (RECIST 1.1) was assessed every 8 weeks by investigators.
- Plasma, archived tissue, and optional tumor biopsies were collected for exploratory analyses.

RESULTS

Study status and CC patient characteristics

- As of March 10, 2017, a total of 168 patients (including all tumor types) had been treated in the study (60 in dose escalation and 108 in the four dose expansion arms).
- 73 patients with CC were treated (**Table 1**) in the dose escalation (n=24) and expansion cohorts (n=49), and 13 remain on treatment.
- Six patients received <500 mg QD, 62 received 500 mg QD and five received >500 mg QD.
- Reasons for discontinuation of patients with CC were adverse event (AE) (n=2), death (n=1), progression of disease (n=48), withdrawal by patient (n=2), and clinical progression (n=7).

Table 1. Demographic/baseline characteristics of CC patients

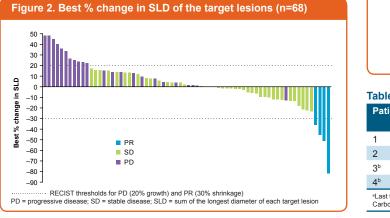
Characteristic	CC patients (n=73)
Female/male, n	49/24
Age, yr, median (range)	60 (32–81)
ECOG Performance Status at screening, n (%)	
0	26 (36)
1	47 (64)
Subtype, n (%)	
Intrahepatic	65 (89)
Extrahepatic	8 (11)
No. of prior systemic therapies, median (range)	2 (1–5)
Prior gemcitabine-based, n (%)	71 (97)
mIDH allele, n (%)	
R132C	56 (77)
R132L	8 (11)
R132G	5 (7)
R132H	2 (3)
R132S	2 (3)

Safety in CC patients

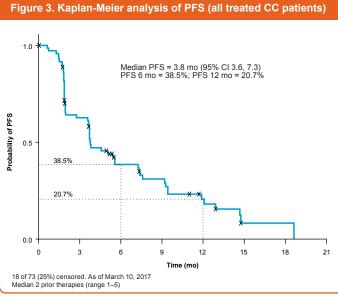
- The most frequent AEs are shown in Table 2.
- There were no dose-limiting toxicities or treatment-related deaths.
- Two patients discontinued study drug due to AEs that were deemed unrelated to AG-120.
- The most frequent drug-related AEs were fatigue (n=18; 25%), nausea (n=14; 19%), diarrhea (n=9; 12%), and vomiting (n=9; 12%).
- Four patients (5%) experienced grade ≥3 drug-related AEs at the 500 mg (n=2) and 1200 mg QD (n=2) dose levels:
- Fatigue at 500 mg and 1200 mg (n=2), blood alkaline phosphatase increased at 500 mg (n=1), and blood phosphorous decreased at 1200 mg (n=1).

- One patient had a dose reduction for an AE (grade 2 worsening) leg cramps) that was judged possibly drug related.
- The dose was reduced from 1200 mg QD to 500 mg QD.

Table 2. Treatment-emergent AEs regardless of attribution in CC patients (>10%^a)


	,			
AE, n (%)	500 mg QD (n=62)		Overall (n=73)	
	Grade 3+	All grades	Grade 3+	All grades
At least one AE	22 (35)	62 (100)	31 (42)	73 (100)
Fatigue	1 (2)	28 (45)	2 (3)	30 (41)
Nausea	1 (2)	23 (37)	1 (1)	26 (36)
Diarrhea		18 (29)		22 (30)
Decreased appetite		19 (31)	1 (1)	20 (27)
Abdominal pain	1 (2)	16 (26)	1 (1)	18 (25)
Vomiting		14 (23)		16 (22)
Edema peripheral		11 (18)		13 (18)
Ascites	3 (5)	9 (15)	4 (5)	12 (16)
Cough		10 (16)	1 (1)	11 (15)
Pyrexia		10 (16)		11 (15)
Abdominal distension	2 (3)	7 (11)	2 (3)	9 (12)
Anemia	2 (3)	7 (11)	3 (4)	9 (12)
Electrocardiogram QT prolonged	1 (2)	8 (13)	2 (3)	9 (12)
Musculoskeletal pain		8 (13)		9 (12)
Abdominal pain upper		6 (10)		8 (11)
Back pain		8 (13)		8 (11)
Constipation		8 (13)		8 (11)
Hypokalemia	1 (2)	7 (11)	1 (1)	8 (11)
Hypomagnesemia		8 (13)		8 (11)

^a>10% based on overall


Clinical activity

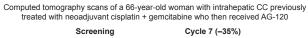
· Best overall responses for the 73 treated patients with CC are shown in Table 3 and Figure 2.

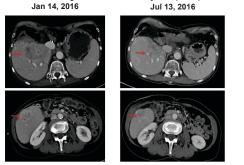
- The overall response rate was 5%, with four partial responses (PRs) (one at 300 mg QD and three at 500 mg QD).
- 56% of patients achieved stable disease.
- The median PFS was 3.8 months (95% CI 3.6, 7.3), the 6-month PFS rate was 38.5%, and the 12-month PFS rate was 20.7% (Figure 3).
- Duration on treatment until progression is shown in Figure 4.
- · Overall survival data are maturing.
- Characteristics of the four patients achieving a PR are shown in Table 4.

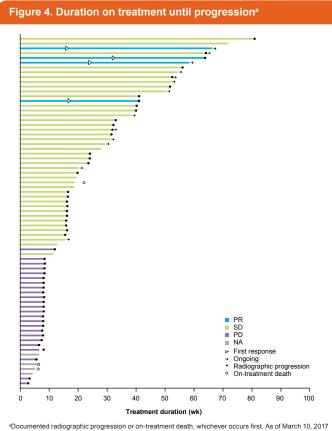
- atient 2

Respons Best response PR

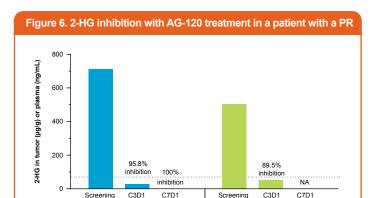
> SD PD


Not assesse As of March 10, 2


Table 3. Best overall response (all treated CC patients)


			• •	
	<500 mg QD (n=6)	500 mg QD (n=62)	>500 mg QD (n=5)	Overall (n=73)
se, n (%)				
	1 (17)	3 (5)		4 (5)
	3 (50)	36 (58)	2 (40)	41 (56)
	1 (17)	21 (34)	2 (40)	24 (33)
eda	1 (17)	2 (3)	1 (20)	4 (5)
2017				

nse assessment due to lack of a nost-baseline a

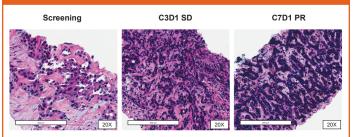

Figure 5. Radiographic changes in a patient with a PR

NA = not assesse

Tumor radiographic changes following AG-120 treatment are shown in Figure 5.

a PR

Exploratory analyses


- Substantial 2-HG inhibition with AG-120 treatment, in both plasma and tumor, is shown in Figure 6.

Exploratory analyses were carried out in a patient achieving

4015

- See poster 4082 for detailed PK/PD analysis (June 3, 8:00-11:30 am).
- Changes in morphology are shown in Figure 7.

Figure 7. Changes in morphology in a patient achieving PR

Hematoxylin and eosin staining shown for serial biopsies. The morphology of the pretreatment tumor is nsistent with a poorly differentiated intrahepatic CC. On treatment, the tumor is moderately differentiated and the tumor cells show less cytoplasm and are arranged in an anaste

CONCLUSIONS

- AG-120 was well tolerated and associated with a favorable safety profile.
- · AG-120 demonstrated encouraging clinical activity, with a 6-month PFS rate of 38.5% and a 12-month PFS rate of 20.7% in this heavily pretreated mIDH1 CC population.
- Preliminary translational data suggest AG-120 may induce morphologic changes consistent with cellular differentiation within the tumor and warrant further investigation of the biologic and clinical significance of these findings.
- These data support further development of AG-120 in the ongoing, global, phase 3, randomized, placebo-controlled study of AG-120 in previously treated mIDH1 CC (ClarIDHy).
- See poster TPS4142 for study design (June 3, 8:00–11:30 am).

Acknowledgments

We would like to thank the patients taking part in this study. We would like to thank Dr Vikram Desphande of Massachusetts General Hospital for pathology support

Disclosures

This study was funded by Agios Pharmaceuticals, Inc.

Author disclosures are available through the ASCO meeting library. Editorial assistance was provided by Christine Ingleby, PhD, Excel Scientific Solutions, Horsham, UK, and supported by Agios

References

- 1. Dang L et al. Nature 2009;462:739-44
- 2. Ward PS et al. Cancer Cell 2010:17:225-34
- 3. Lu C et al. Nature 2012;483:474-8.
- 4. Saha SK et al. Nature 2014;513:110-4.
- 5. Xu W et al. Cancer Cell 2011;19:17-30.
- 6. Goyal L et al. Oncologist 2015;20:1019-27.
- 7. Lamarca A et al. Ann Oncol 2014:25:2328-38
- 8. Brieau B et al. Cancer 2015;121:3290-7
- 9. Burris et al. AACR-NCI-EORTC 2015; Abstract PL04-05.

Table 4. Summary of responders

, seperate a				
Prior treatment	Duration on last therapy (mo)	Sum of baseline target lesions (mm)	% maximum change in target lesions at PR	PFS on AG-120 (mo)
Gem/Cis, Gem/Ox, Cis/Taxotereª	3.0	99	-45%	9.4
Gem/Cis, FOLFIRI, Taxol, experimental agent ^a	2.1	161	-48%	14.7
Gem/Cis, Gem/Carbo ^a	2.7	72	-82%	14.7+
Gem/Cis ^a	1.4	117	-35%	12.9+
NPD for				

C3D1 = Cycle 3 Day 1; C7D1 = Cycle 7 Day 1

Carbo = carboplatin; Cis = cisplatin; FOLFIRI = irinotecan + 5FU + folinic acid; Gem = gemcitabine; Ox = oxaliplati