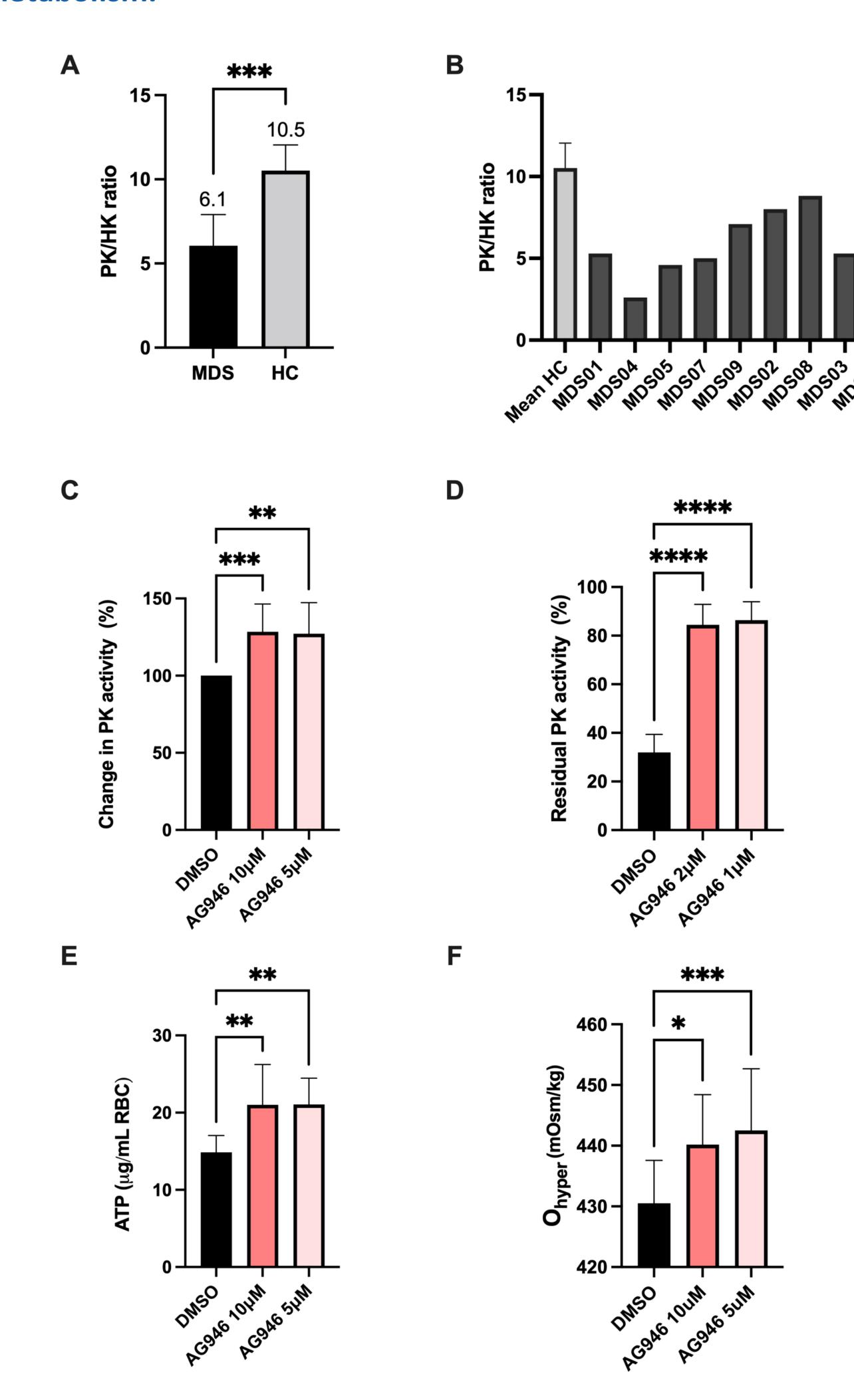
The Pyruvate Kinase (PK) Activator AG-946 Improves PK Properties and Red Blood Cell (RBC) Characteristics upon *Ex Vivo* Treatment of RBCs from Patients with Myelodysplastic Syndromes

Jonathan R.A. de Wilde^{* 1}, Titine J.J. Ruiter^{1,2}, Brigitte A. van Oirschot¹, Judith J.M. Jans², Lenny Dang³, Megan Wind-Rotolo³, Noortje Thielen⁴, Wouter W. van Solinge¹, Anna van Rhenen⁵, Richard van Wijk¹ and Minke A.E. Rab^{1,5}.

¹Red Blood Cell Research Group, Central Diagnostic Laboratory-Research, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands, ²Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, Utrecht, Utrecht University, Utrecht, the Netherlands, ³Agios Pharmaceuticals, Inc., Cambridge, Massachusetts, ⁴Department of Internal Medicine, Diakonessenhuis, Utrecht, The Netherlands, ⁵Department of Hematology, University Medical Center Utrecht, Utrecht, Utrecht University, Utrecht, the Netherlands.

Purpose

To evaluate red blood cell (RBC) pyruvate kinase (PK) and cellular properties of patients with myelodysplastic syndrome (MDS), and to determine the effect of *ex vivo* treatment with the PK activator AG-946.


Introduction

- Patients with MDS frequently suffer from anemia, which directly affects their quality of life. Therapeutic options for these patients are limited.
- Decreased activity of RBC PK, a key regulatory enzyme of glycolysis, has been described previously in MDS patients.
- In light of current advances in PK activation therapies (including a clinical trial (NCT05490446)), we studied properties of RBC PK in MDS, as well as the effect of *ex vivo* treatment of MDS RBCs with the PK activator AG-946.

Methods

- Eleven non-transfusion dependent MDS patients and six healthy controls (HCs) were studied.
- PK activity and thermostability were measured, as well as hexokinase (HK) activity, to evaluate PK activity in relation to mean RBC age (PK/HK ratio).
- Ex vivo treatment with MDS RBCs with PK activator AG-946 (10uM or 5uM), compared to blanc (DMSO). After incubation of 16 hours at 37 °C, the following assays were performed:
 - PK activity
 - ATP levels (LC-MS/MS) (N=10)
 - Osmotic gradient ektacytometry (Lorrca Maxsis)
- Effect of PK activation on PK thermostability was assessed by incubating RBC lysates (DMSO, AG-946 2uM, AG-946 1uM), after which lysates were incubated at 53 °C for 60 minutes (PEP 0.5mM).
- Effect of PK activation on erythroid development was assessed by culturing peripheral blood mononuclear cells MethoCult™ H4434 medium for 14 days in absence or presence of AG-946 (10uM or 625nM, DMSO as blank).

Figure 1. PK is affected in MDS RBCs, yet can be restored upon *ex vivo* treatment with PK activator AG-946, subsequently improving RBC metabolism.

Results

- Mean PK/HK ratio was significantly decreased in MDS compared to HCs (6.1 versus 10.5), as well as baseline PK thermostability (expressed as residual activity, 68% versus 79%). (Figure 1A,B).
- Ex vivo treatment with the PK activator AG-946 led to an increase in both PK activity and residual PK activity incubation at 53 °C at 60 minutes (Figure 1C,D).
 - PK activity: $10\mu M$ AG-946, mean increase 29%; $5\mu M$ AG-946, 27%.
- PK thermostability: DMSO, 32% residual activity; $2\mu M$ AG-946, 84%; $1\mu M$ AG-946, 86%.
- Upon PK activation, ATP levels also significantly increased (Figure 1E).
- RBC functionality improved upon treatment with AG-946, as reflected by the increase in Ohyper, indicating improved hydration status (Figure 1F).
- To date, colony forming culture assays have been performed in 4/11 patients. Interestingly, in one of four there was 36% increase in number of burst forming units-erythroid (non-dose-related) upon treatment with AG-946.

Conclusion

Our findings suggest that RBCs from MDS patients show a decrease in PK activity and thermostability. Furthermore, we show that ex vivo treatment with AG-946 increases PK activity, ATP levels and stabilizes PK. RBC hydration was shown to be improved upon treatment with AG-946. The preliminary results of the culture assay could indicate that in certain patients, dyserythropoiesis may be ameliorated upon PK activation. In conclusion, our data might support a rationale for the use of PK activators as a novel therapeutic option for MDS.